- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 273-300.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
Simulation of turbulent flows with shocks employing subgrid-scale (SGS) filtering may encounter a loss of accuracy in the vicinity of a shock. This paper addresses the accuracy improvement of LES of turbulent flows in two ways: (a) from the SGS model standpoint and (b) from the numerical method improvement standpoint. In an internal report, Kotov et al. ("High Order Numerical Methods for large eddy simulation (LES) of Turbulent Flows with Shocks", CTR Tech Brief, Oct. 2014, Stanford University), we performed a preliminary comparative study of different approaches to reduce the loss of accuracy within the framework of the dynamic Germano SGS model. The high order low dissipative method of Yee & Sjögreen (2009) using local flow sensors to control the amount of numerical dissipation where needed is used for the LES simulation. The considered improved dynamics model approaches include applying the one-sided SGS test filter of Sagaut & Germano (2005) and/or disabling the SGS terms at the shock location. For Mach 1.5 and 3 canonical shock-turbulence interaction problems, both of these approaches show a similar accuracy improvement to that of the full use of the SGS terms. The present study focuses on a five levels of grid refinement study to obtain the reference direct numerical simulation (DNS) solution for additional LES SGS comparison and approaches. One of the numerical accuracy improvements included here applies Harten's subcell resolution procedure to locate and sharpen the shock, and uses a one-sided test filter at the grid points adjacent to the exact shock location.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.211014.040915a}, url = {http://global-sci.org/intro/article_detail/cicp/11089.html} }Simulation of turbulent flows with shocks employing subgrid-scale (SGS) filtering may encounter a loss of accuracy in the vicinity of a shock. This paper addresses the accuracy improvement of LES of turbulent flows in two ways: (a) from the SGS model standpoint and (b) from the numerical method improvement standpoint. In an internal report, Kotov et al. ("High Order Numerical Methods for large eddy simulation (LES) of Turbulent Flows with Shocks", CTR Tech Brief, Oct. 2014, Stanford University), we performed a preliminary comparative study of different approaches to reduce the loss of accuracy within the framework of the dynamic Germano SGS model. The high order low dissipative method of Yee & Sjögreen (2009) using local flow sensors to control the amount of numerical dissipation where needed is used for the LES simulation. The considered improved dynamics model approaches include applying the one-sided SGS test filter of Sagaut & Germano (2005) and/or disabling the SGS terms at the shock location. For Mach 1.5 and 3 canonical shock-turbulence interaction problems, both of these approaches show a similar accuracy improvement to that of the full use of the SGS terms. The present study focuses on a five levels of grid refinement study to obtain the reference direct numerical simulation (DNS) solution for additional LES SGS comparison and approaches. One of the numerical accuracy improvements included here applies Harten's subcell resolution procedure to locate and sharpen the shock, and uses a one-sided test filter at the grid points adjacent to the exact shock location.