- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 192-204.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
We devise an efficient algorithm for the symbolic calculation of irreducible angular momentum and spin (LS) eigenspaces within the $n$-fold antisymmetrized tensor product $Λ^n$$V_u$, where n is the number of electrons and $u$ = s,p,d,··· denotes the atomic subshell. This is an essential step for dimension reduction in configuration-interaction (CI) methods applied to atomic many-electron quantum systems. The algorithm relies on the observation that each $L_z$ eigenstate with maximal eigenvalue is also an $L^2$ eigenstate (equivalently for $S_z$ and $S^2$ ), as well as the traversal of LS eigenstates using the lowering operators $L_−$ and $S_−$. Iterative application to the remaining states in $Λ^n$$V_u$ leads to an implicit simultaneous diagonalization. A detailed complexity analysis for fixed $n$ and increasing subshell number $u$ yields run time $\mathcal{O}$($u^{3n−2}$). A symbolic computer algebra implementation is available online.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.281014.190615a}, url = {http://global-sci.org/intro/article_detail/cicp/11085.html} }We devise an efficient algorithm for the symbolic calculation of irreducible angular momentum and spin (LS) eigenspaces within the $n$-fold antisymmetrized tensor product $Λ^n$$V_u$, where n is the number of electrons and $u$ = s,p,d,··· denotes the atomic subshell. This is an essential step for dimension reduction in configuration-interaction (CI) methods applied to atomic many-electron quantum systems. The algorithm relies on the observation that each $L_z$ eigenstate with maximal eigenvalue is also an $L^2$ eigenstate (equivalently for $S_z$ and $S^2$ ), as well as the traversal of LS eigenstates using the lowering operators $L_−$ and $S_−$. Iterative application to the remaining states in $Λ^n$$V_u$ leads to an implicit simultaneous diagonalization. A detailed complexity analysis for fixed $n$ and increasing subshell number $u$ yields run time $\mathcal{O}$($u^{3n−2}$). A symbolic computer algebra implementation is available online.