- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 94-123.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
An efficient and accurate numerical scheme is proposed for solving the transverse electric (TE) mode electromagnetic (EM) propagation problem in two-dimensional earth. The scheme is based on the alternating direction finite-difference time-domain (ADI-FDTD) method. Unlike the conventional upward continuation approach for the earth-air interface, an integral formulation for the interface boundary is developed and it is effectively incorporated to the ADI solver. Stability and convergence analysis together with an error estimate are presented. Numerical simulations are carried out to validate the proposed method, and the advantage of the present method over the popular Du-Fort-Frankel scheme is clearly demonstrated. Examples of the electromagnetic field propagation in the ground with anomaly further verify the effectiveness of the proposed scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.160914.270315a}, url = {http://global-sci.org/intro/article_detail/cicp/11081.html} }An efficient and accurate numerical scheme is proposed for solving the transverse electric (TE) mode electromagnetic (EM) propagation problem in two-dimensional earth. The scheme is based on the alternating direction finite-difference time-domain (ADI-FDTD) method. Unlike the conventional upward continuation approach for the earth-air interface, an integral formulation for the interface boundary is developed and it is effectively incorporated to the ADI solver. Stability and convergence analysis together with an error estimate are presented. Numerical simulations are carried out to validate the proposed method, and the advantage of the present method over the popular Du-Fort-Frankel scheme is clearly demonstrated. Examples of the electromagnetic field propagation in the ground with anomaly further verify the effectiveness of the proposed scheme.