- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 18 (2015), pp. 1282-1312.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
Dislocations are line defects in crystalline materials. The Peierls-Nabarro models are hybrid models that incorporate atomic structure of dislocation core into continuum framework. In this paper, we present a numerical method for a generalized Peierls-Nabarro model for curved dislocations, based on the fast multipole method and the iterative grid redistribution. The fast multipole method enables the calculation of the long-range elastic interaction within operations that scale linearly with the total number of grid points. The iterative grid redistribution places more mesh nodes in the regions around the dislocations than in the rest of the domain, thus increases the accuracy and efficiency. This numerical scheme improves the available numerical methods in the literature in which the long-range elastic interactions are calculated directly from summations in the physical domains; and is more flexible to handle problems with general boundary conditions compared with the previous FFT based method which applies only under periodic boundary conditions. Numerical examples using this method on the core structures of dislocations in Al and Cu and in epitaxial thin films are presented.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.130114.270315a}, url = {http://global-sci.org/intro/article_detail/cicp/11069.html} }Dislocations are line defects in crystalline materials. The Peierls-Nabarro models are hybrid models that incorporate atomic structure of dislocation core into continuum framework. In this paper, we present a numerical method for a generalized Peierls-Nabarro model for curved dislocations, based on the fast multipole method and the iterative grid redistribution. The fast multipole method enables the calculation of the long-range elastic interaction within operations that scale linearly with the total number of grid points. The iterative grid redistribution places more mesh nodes in the regions around the dislocations than in the rest of the domain, thus increases the accuracy and efficiency. This numerical scheme improves the available numerical methods in the literature in which the long-range elastic interactions are calculated directly from summations in the physical domains; and is more flexible to handle problems with general boundary conditions compared with the previous FFT based method which applies only under periodic boundary conditions. Numerical examples using this method on the core structures of dislocations in Al and Cu and in epitaxial thin films are presented.