- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 18 (2015), pp. 529-557.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
The accuracy of moment equations as approximations of kinetic gas theory is studied for four different boundary value problems. The kinetic setting is given by the BGK equation linearized around a globally constant Maxwellian using one space dimension and a three-dimensional velocity space. The boundary value problems include Couette and Poiseuille flow as well as heat conduction between walls and heat conduction based on a locally varying heating source. The polynomial expansion of the distribution function allows for different moment theories of which two popular families are investigated in detail. Furthermore, optimal approximations for a given number of variables are studied empirically. The paper focuses on approximations with relatively low number of variables which allows to draw conclusions in particular about specific moment theories like the regularized 13-moment equations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.061013.160215a}, url = {http://global-sci.org/intro/article_detail/cicp/11039.html} }The accuracy of moment equations as approximations of kinetic gas theory is studied for four different boundary value problems. The kinetic setting is given by the BGK equation linearized around a globally constant Maxwellian using one space dimension and a three-dimensional velocity space. The boundary value problems include Couette and Poiseuille flow as well as heat conduction between walls and heat conduction based on a locally varying heating source. The polynomial expansion of the distribution function allows for different moment theories of which two popular families are investigated in detail. Furthermore, optimal approximations for a given number of variables are studied empirically. The paper focuses on approximations with relatively low number of variables which allows to draw conclusions in particular about specific moment theories like the regularized 13-moment equations.