- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 18 (2015), pp. 489-515.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
In this study, we compare different diffuse and sharp interface schemes of direct-forcing immersed boundary — thermal lattice Boltzmann method (IB-TLBM) for non-Newtonian flow over a heated circular cylinder. Both effects of the discrete lattice and the body force on the momentum and energy equations are considered, by applying the split-forcing Lattice Boltzmann equations. A new technique based on predetermined parameters of direct forcing IB-TLBM is presented for computing the Nusselt number. The study covers both steady and unsteady regimes (20<Re<80) in the power-law index range of 0.6<n<1.4, encompassing both shear-thinning and shear-thickening non-Newtonian fluids. The numerical scheme, hydrodynamic approach and thermal parameters of different interface schemes are compared in both steady and unsteady cases. It is found that the sharp interface scheme is a suitable and possibly competitive method for thermal-IBM in terms of accuracy and computational cost.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.060414.220115a}, url = {http://global-sci.org/intro/article_detail/cicp/11037.html} }In this study, we compare different diffuse and sharp interface schemes of direct-forcing immersed boundary — thermal lattice Boltzmann method (IB-TLBM) for non-Newtonian flow over a heated circular cylinder. Both effects of the discrete lattice and the body force on the momentum and energy equations are considered, by applying the split-forcing Lattice Boltzmann equations. A new technique based on predetermined parameters of direct forcing IB-TLBM is presented for computing the Nusselt number. The study covers both steady and unsteady regimes (20<Re<80) in the power-law index range of 0.6<n<1.4, encompassing both shear-thinning and shear-thickening non-Newtonian fluids. The numerical scheme, hydrodynamic approach and thermal parameters of different interface schemes are compared in both steady and unsteady cases. It is found that the sharp interface scheme is a suitable and possibly competitive method for thermal-IBM in terms of accuracy and computational cost.