- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 18 (2015), pp. 469-488.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
In this paper, preconditioned iterative methods for solving two-dimensional space-fractional diffusion equations are considered. The fractional diffusion equation is discretized by a second-order finite difference scheme, namely, the Crank-Nicolson weighted and shifted Grünwald difference (CN-WSGD) scheme proposed in [W. Tian, H. Zhou and W. Deng, A class of second order difference approximation for solving space fractional diffusion equations, Math. Comp., 84 (2015) 1703-1727]. For the discretized linear systems, we first propose preconditioned iterative methods to solve them. Then we apply the D'Yakonov ADI scheme to split the linear systems and solve the obtained splitting systems by iterative methods. Two preconditioned iterative methods, the preconditioned generalized minimal residual (preconditioned GMRES) method and the preconditioned conjugate gradient normal residual (preconditioned CGNR) method, are proposed to solve relevant linear systems. By fully exploiting the structure of the coefficient matrix, we design two special kinds of preconditioners, which are easily constructed and are able to accelerate convergence of iterative solvers. Numerical results show the efficiency of our preconditioners.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.120314.230115a}, url = {http://global-sci.org/intro/article_detail/cicp/11036.html} }In this paper, preconditioned iterative methods for solving two-dimensional space-fractional diffusion equations are considered. The fractional diffusion equation is discretized by a second-order finite difference scheme, namely, the Crank-Nicolson weighted and shifted Grünwald difference (CN-WSGD) scheme proposed in [W. Tian, H. Zhou and W. Deng, A class of second order difference approximation for solving space fractional diffusion equations, Math. Comp., 84 (2015) 1703-1727]. For the discretized linear systems, we first propose preconditioned iterative methods to solve them. Then we apply the D'Yakonov ADI scheme to split the linear systems and solve the obtained splitting systems by iterative methods. Two preconditioned iterative methods, the preconditioned generalized minimal residual (preconditioned GMRES) method and the preconditioned conjugate gradient normal residual (preconditioned CGNR) method, are proposed to solve relevant linear systems. By fully exploiting the structure of the coefficient matrix, we design two special kinds of preconditioners, which are easily constructed and are able to accelerate convergence of iterative solvers. Numerical results show the efficiency of our preconditioners.