- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 18 (2015), pp. 180-202.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
In this paper, we compute a phase field (diffuse interface) model of Cahn-Hilliard type for moving contact line problems governing the motion of isothermal multiphase incompressible fluids. The generalized Navier boundary condition proposed by Qian et al. [1] is adopted here. We discretize model equations using a continuous finite element method in space and a modified midpoint scheme in time. We apply a penalty formulation to the continuity equation which may increase the stability in the pressure variable. Two kinds of immiscible fluids in a pipe and droplet displacement with a moving contact line under the effect of pressure driven shear flow are studied using a relatively coarse grid. We also derive the discrete energy law for the droplet displacement case, which is slightly different due to the boundary conditions. The accuracy and stability of the scheme are validated by examples, results and estimate order.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.170314.160115a}, url = {http://global-sci.org/intro/article_detail/cicp/11024.html} }In this paper, we compute a phase field (diffuse interface) model of Cahn-Hilliard type for moving contact line problems governing the motion of isothermal multiphase incompressible fluids. The generalized Navier boundary condition proposed by Qian et al. [1] is adopted here. We discretize model equations using a continuous finite element method in space and a modified midpoint scheme in time. We apply a penalty formulation to the continuity equation which may increase the stability in the pressure variable. Two kinds of immiscible fluids in a pipe and droplet displacement with a moving contact line under the effect of pressure driven shear flow are studied using a relatively coarse grid. We also derive the discrete energy law for the droplet displacement case, which is slightly different due to the boundary conditions. The accuracy and stability of the scheme are validated by examples, results and estimate order.