- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 18 (2015), pp. 65-90.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
A weak Galerkin discretization of the boundary value problem of a general anisotropic diffusion problem is studied for preservation of the maximum principle. It is shown that the direct application of the M-matrix theory to the stiffness matrix of the weak Galerkin discretization leads to a strong mesh condition requiring all of the mesh dihedral angles to be strictly acute (a constant-order away from 90 degrees). To avoid this difficulty, a reduced system is considered and shown to satisfy the discrete maximum principle under weaker mesh conditions. The discrete maximum principle is then established for the full weak Galerkin approximation using the relations between the degrees of freedom located on elements and edges. Sufficient mesh conditions for both piecewise constant and general anisotropic diffusion matrices are obtained. These conditions provide a guideline for practical mesh generation for preservation of the maximum principle. Numerical examples are presented.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.180914.121214a}, url = {http://global-sci.org/intro/article_detail/cicp/11018.html} }A weak Galerkin discretization of the boundary value problem of a general anisotropic diffusion problem is studied for preservation of the maximum principle. It is shown that the direct application of the M-matrix theory to the stiffness matrix of the weak Galerkin discretization leads to a strong mesh condition requiring all of the mesh dihedral angles to be strictly acute (a constant-order away from 90 degrees). To avoid this difficulty, a reduced system is considered and shown to satisfy the discrete maximum principle under weaker mesh conditions. The discrete maximum principle is then established for the full weak Galerkin approximation using the relations between the degrees of freedom located on elements and edges. Sufficient mesh conditions for both piecewise constant and general anisotropic diffusion matrices are obtained. These conditions provide a guideline for practical mesh generation for preservation of the maximum principle. Numerical examples are presented.