- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 17 (2015), pp. 1037-1055.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
The effective thermal conductivity of composite materials with thermal contact resistance at interfaces is studied by lattice Boltzmann modeling in this work. We modified the non-dimensional partial bounce-back scheme, proposed by Han et al. [Int. J. Thermal Sci., 2008. 47: 1276-1283], to introduce a real thermal contact resistance at interfaces into the thermal lattice Boltzmann framework by re-deriving the redistribution function of heat at the phase interfaces for a corrected dimensional formulation. The modified scheme was validated in several cases with good agreement between the simulation results and the corresponding theoretical solutions. Furthermore, we predicted the effective thermal conductivities of composite materials using this method where the contact thermal resistance was not negligible, and revealed the effects of particle volume fraction, thermal contact resistance and particle size. The results in this study may provide a useful support for materials design and structure optimization.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2014.m360}, url = {http://global-sci.org/intro/article_detail/cicp/11000.html} }The effective thermal conductivity of composite materials with thermal contact resistance at interfaces is studied by lattice Boltzmann modeling in this work. We modified the non-dimensional partial bounce-back scheme, proposed by Han et al. [Int. J. Thermal Sci., 2008. 47: 1276-1283], to introduce a real thermal contact resistance at interfaces into the thermal lattice Boltzmann framework by re-deriving the redistribution function of heat at the phase interfaces for a corrected dimensional formulation. The modified scheme was validated in several cases with good agreement between the simulation results and the corresponding theoretical solutions. Furthermore, we predicted the effective thermal conductivities of composite materials using this method where the contact thermal resistance was not negligible, and revealed the effects of particle volume fraction, thermal contact resistance and particle size. The results in this study may provide a useful support for materials design and structure optimization.