- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 17 (2015), pp. 542-563.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
A novel method is developed for solving the inverse problem of reconstructing the shape of an interior cavity. The boundary of the cavity is assumed to be a small and smooth perturbation of a circle. The incident field is generated by a point source inside the cavity. The scattering data is taken on a circle centered at the source. The method requires only a single incident wave at one frequency. Using a transformed field expansion, the original boundary value problem is reduced to a successive sequence of two-point boundary value problems and is solved in a closed form. By dropping higher order terms in the power series expansion, the inverse problem is linearized and an explicit relation is established between the Fourier coefficients of the cavity surface function and the total field. A nonlinear correction algorithm is devised to improve the accuracy of the reconstruction. Numerical results are presented to show the effectiveness of the method and its ability to obtain subwavelength resolution.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.010414.250914a}, url = {http://global-sci.org/intro/article_detail/cicp/10968.html} }A novel method is developed for solving the inverse problem of reconstructing the shape of an interior cavity. The boundary of the cavity is assumed to be a small and smooth perturbation of a circle. The incident field is generated by a point source inside the cavity. The scattering data is taken on a circle centered at the source. The method requires only a single incident wave at one frequency. Using a transformed field expansion, the original boundary value problem is reduced to a successive sequence of two-point boundary value problems and is solved in a closed form. By dropping higher order terms in the power series expansion, the inverse problem is linearized and an explicit relation is established between the Fourier coefficients of the cavity surface function and the total field. A nonlinear correction algorithm is devised to improve the accuracy of the reconstruction. Numerical results are presented to show the effectiveness of the method and its ability to obtain subwavelength resolution.