- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 17 (2015), pp. 213-232.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
In this study, the Lattice Boltzmann Method (LBM) is implemented through a finite-volume approach to perform 2-D, incompressible, and turbulent fluid flow analyses on structured grids. Even though the approach followed in this study necessitates more computational effort compared to the standard LBM (the so called stream and collide scheme), using the finite-volume method, the known limitations of the stream and collide scheme on lattice to be uniform and Courant-Friedrichs-Lewy (CFL) number to be one are removed. Moreover, the curved boundaries in the computational domain are handled more accurately with less effort. These improvements pave the way for the possibility of solving fluid flow problems with the LBM using coarser grids that are refined only where it is necessary and the boundary layers might be resolved better.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.040314.010814a}, url = {http://global-sci.org/intro/article_detail/cicp/10956.html} }In this study, the Lattice Boltzmann Method (LBM) is implemented through a finite-volume approach to perform 2-D, incompressible, and turbulent fluid flow analyses on structured grids. Even though the approach followed in this study necessitates more computational effort compared to the standard LBM (the so called stream and collide scheme), using the finite-volume method, the known limitations of the stream and collide scheme on lattice to be uniform and Courant-Friedrichs-Lewy (CFL) number to be one are removed. Moreover, the curved boundaries in the computational domain are handled more accurately with less effort. These improvements pave the way for the possibility of solving fluid flow problems with the LBM using coarser grids that are refined only where it is necessary and the boundary layers might be resolved better.