- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 17 (2015), pp. 127-145.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
A two-grid method for solving the Cahn-Hilliard equation is proposed in this paper. This two-grid method consists of two steps. First, solve the Cahn-Hilliard equation with an implicit mixed finite element method on a coarse grid. Second, solve two Poisson equations using multigrid methods on a fine grid. This two-grid method can also be combined with local mesh refinement to further improve the efficiency. Numerical results including two and three dimensional cases with linear or quadratic elements show that this two-grid method can speed up the existing mixed finite method while keeping the same convergence rate.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.231213.100714a}, url = {http://global-sci.org/intro/article_detail/cicp/10953.html} }A two-grid method for solving the Cahn-Hilliard equation is proposed in this paper. This two-grid method consists of two steps. First, solve the Cahn-Hilliard equation with an implicit mixed finite element method on a coarse grid. Second, solve two Poisson equations using multigrid methods on a fine grid. This two-grid method can also be combined with local mesh refinement to further improve the efficiency. Numerical results including two and three dimensional cases with linear or quadratic elements show that this two-grid method can speed up the existing mixed finite method while keeping the same convergence rate.