- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
We consider a charged particle confined in a one-dimensional rectangular double-well potential, driven by an external periodic excitation at frequency Ω and with amplitude A. We find that there is the regime of the parametric resonance due to the modulation of the amplitude A at the frequency ωprm, which results in the change in the population dynamics of the energy levels. The analysis relies on the Dirac system of Hamiltonian equations that are equivalent to the Schrödinger equation. Considering a finite dimensional approximation to the Dirac system, we construct the foliation of its phase space by subsets Fab given by constraints a ≤ N0 ≤ b on the occupation probabilities N0 of the ground state, and describe the tunneling by frequencies νab of the system's visiting subsets Fab. The frequencies νab determine the probability density and thus the Shannon entropy, which has the maximum value at the resonant frequency ω = ωprm. The reconstruction of the state-space of the system's dynamics with the help of the Shaw-Takens method indicates that the quasi-periodic motion breaks down at the resonant value ωprm.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/10939.html} }We consider a charged particle confined in a one-dimensional rectangular double-well potential, driven by an external periodic excitation at frequency Ω and with amplitude A. We find that there is the regime of the parametric resonance due to the modulation of the amplitude A at the frequency ωprm, which results in the change in the population dynamics of the energy levels. The analysis relies on the Dirac system of Hamiltonian equations that are equivalent to the Schrödinger equation. Considering a finite dimensional approximation to the Dirac system, we construct the foliation of its phase space by subsets Fab given by constraints a ≤ N0 ≤ b on the occupation probabilities N0 of the ground state, and describe the tunneling by frequencies νab of the system's visiting subsets Fab. The frequencies νab determine the probability density and thus the Shannon entropy, which has the maximum value at the resonant frequency ω = ωprm. The reconstruction of the state-space of the system's dynamics with the help of the Shaw-Takens method indicates that the quasi-periodic motion breaks down at the resonant value ωprm.