- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 234-252.
Published online: 2018-03
Cited by
- BibTex
- RIS
- TXT
Red blood cells can recover their resting shape after having been deformed by shear flow. Their rims are always formed by the same part of the membranes, and the cells are said to have shape memory. Modeled as two-dimensional elastic capsules, their recovery motion and shape memory is studied, mainly focused on the effect of the spontaneous shape. The fluid-structure interaction is modeled using immersed boundary method. Based on the simulations, the resting shapes of capsules are obtained and the area ratio of spontaneous shape is found to play an important role. After remove of shear flow, all capsules can recover their resting shapes, while only capsules with noncircular spontaneous shapes present shape memory. As the spontaneous shape approaches a circle but still noncircular, the capsule spends more time on recovery process. We consider how these capsules deform depending on the membrane bending energy, and find that the relaxation speed is positive correlated to the range of values of dimensionless bending energy. These results may help to identify different spontaneous shapes for capsules especially RBCs through future experiments.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0075}, url = {http://global-sci.org/intro/article_detail/cicp/10935.html} }Red blood cells can recover their resting shape after having been deformed by shear flow. Their rims are always formed by the same part of the membranes, and the cells are said to have shape memory. Modeled as two-dimensional elastic capsules, their recovery motion and shape memory is studied, mainly focused on the effect of the spontaneous shape. The fluid-structure interaction is modeled using immersed boundary method. Based on the simulations, the resting shapes of capsules are obtained and the area ratio of spontaneous shape is found to play an important role. After remove of shear flow, all capsules can recover their resting shapes, while only capsules with noncircular spontaneous shapes present shape memory. As the spontaneous shape approaches a circle but still noncircular, the capsule spends more time on recovery process. We consider how these capsules deform depending on the membrane bending energy, and find that the relaxation speed is positive correlated to the range of values of dimensionless bending energy. These results may help to identify different spontaneous shapes for capsules especially RBCs through future experiments.