- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 69-85.
Published online: 2018-03
Cited by
- BibTex
- RIS
- TXT
Many physical problems involve unbounded domains where the physical quantities vanish at infinities. Numerically, this has been handled using different techniques such as domain truncation, approximations using infinitely extended and vanishing basis sets, and mapping bounded basis sets using some coordinate transformations. Each technique has its own advantages and disadvantages. Yet, approximating simultaneously and efficiently a wide range of decaying rates has persisted as major challenge. Also, coordinate transformation, if not carefully implemented, can result in non-orthogonal mapped basis sets. In this work, we revisited this issue with an emphasize on designing appropriate transformations using sine series as basis set. The transformations maintain both the orthogonality and the efficiency. Furthermore, using simple basis set (sine function) help avoid the expensive numerical integrations. In the calculations, four types of physically recurring decaying behaviors are considered, which are: non-oscillating and oscillating exponential decays, and non-oscillating and oscillating algebraic decays. The results and the analyses show that properly designed high-order mapped basis sets can be efficient tools to handle challenging physical problems on unbounded domains. Decay rate ranges as large of 6 orders of magnitudes can be approximated efficiently and concurrently.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0067}, url = {http://global-sci.org/intro/article_detail/cicp/10928.html} }Many physical problems involve unbounded domains where the physical quantities vanish at infinities. Numerically, this has been handled using different techniques such as domain truncation, approximations using infinitely extended and vanishing basis sets, and mapping bounded basis sets using some coordinate transformations. Each technique has its own advantages and disadvantages. Yet, approximating simultaneously and efficiently a wide range of decaying rates has persisted as major challenge. Also, coordinate transformation, if not carefully implemented, can result in non-orthogonal mapped basis sets. In this work, we revisited this issue with an emphasize on designing appropriate transformations using sine series as basis set. The transformations maintain both the orthogonality and the efficiency. Furthermore, using simple basis set (sine function) help avoid the expensive numerical integrations. In the calculations, four types of physically recurring decaying behaviors are considered, which are: non-oscillating and oscillating exponential decays, and non-oscillating and oscillating algebraic decays. The results and the analyses show that properly designed high-order mapped basis sets can be efficient tools to handle challenging physical problems on unbounded domains. Decay rate ranges as large of 6 orders of magnitudes can be approximated efficiently and concurrently.