- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 23 (2018), pp. 747-772.
Published online: 2018-03
Cited by
- BibTex
- RIS
- TXT
We design and numerically validate a local discontinuous Galerkin (LDG) method to compute solutions to the initial value problem for a nonlinear variational wave equation originally proposed to model liquid crystals. For the semi-discrete LDG formulation with a class of alternating numerical fluxes, the energy conserving property is verified. A dissipative scheme is also introduced by locally imposing some numerical "damping" in the scheme so as to suppress some numerical oscillations near solution singularities. Extensive numerical experiments are presented to validate and illustrate the effectiveness of the numerical methods. Optimal convergence in $L^2$ is numerically obtained when using alternating numerical fluxes. When using the central numerical flux, only sub-optimal convergence is observed for polynomials of odd degree. Numerical simulations with long time integration indicate that the energy conserving property is crucial for accurately capturing the underlying wave shapes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0189}, url = {http://global-sci.org/intro/article_detail/cicp/10546.html} }We design and numerically validate a local discontinuous Galerkin (LDG) method to compute solutions to the initial value problem for a nonlinear variational wave equation originally proposed to model liquid crystals. For the semi-discrete LDG formulation with a class of alternating numerical fluxes, the energy conserving property is verified. A dissipative scheme is also introduced by locally imposing some numerical "damping" in the scheme so as to suppress some numerical oscillations near solution singularities. Extensive numerical experiments are presented to validate and illustrate the effectiveness of the numerical methods. Optimal convergence in $L^2$ is numerically obtained when using alternating numerical fluxes. When using the central numerical flux, only sub-optimal convergence is observed for polynomials of odd degree. Numerical simulations with long time integration indicate that the energy conserving property is crucial for accurately capturing the underlying wave shapes.