- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 23 (2018), pp. 520-539.
Published online: 2018-02
Cited by
- BibTex
- RIS
- TXT
The p$K_a$ values are important quantities characterizing the ability of protein active sites to give up protons. p$K_a$ can be measured using NMR by tracing chemical-shifts of some special atoms, which is however expensive and time-consuming. Alternatively, p$K_a$ can be calculated numerically by electrostatic free energy changes subject to the protonation and deprotonation of titration sites. To this end, the Poisson-Boltzmann (PB) model is an effective approach for the electrostatics. However, numerically solving PB equation is challenging due to the jump conditions across the dielectric interfaces, irregular geometry of the molecular surface, and charge singularities. Our recently developed matched interface and boundary (MIB) method treats these challenges rigorously, resulting in a solid second order MIBPB solver. Since the MIBPB solver uses Green's function based regularization of charge singularities by decomposing the solution into a singular component and a regularized component, it is particularly efficient in treating the accuracy-sensitive, numerous, and complicated charge distributions from the p$K_a$ calculation. Our numerical results demonstrate that accurate free energies and p$K_a$ values are achieved at coarse grid rapidly. In addition, the resulting software, which pipelines the entire p$K_a$ calculation procedure, is available to all potential users from the greater bioscience community.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0078}, url = {http://global-sci.org/intro/article_detail/cicp/10536.html} }The p$K_a$ values are important quantities characterizing the ability of protein active sites to give up protons. p$K_a$ can be measured using NMR by tracing chemical-shifts of some special atoms, which is however expensive and time-consuming. Alternatively, p$K_a$ can be calculated numerically by electrostatic free energy changes subject to the protonation and deprotonation of titration sites. To this end, the Poisson-Boltzmann (PB) model is an effective approach for the electrostatics. However, numerically solving PB equation is challenging due to the jump conditions across the dielectric interfaces, irregular geometry of the molecular surface, and charge singularities. Our recently developed matched interface and boundary (MIB) method treats these challenges rigorously, resulting in a solid second order MIBPB solver. Since the MIBPB solver uses Green's function based regularization of charge singularities by decomposing the solution into a singular component and a regularized component, it is particularly efficient in treating the accuracy-sensitive, numerous, and complicated charge distributions from the p$K_a$ calculation. Our numerical results demonstrate that accurate free energies and p$K_a$ values are achieved at coarse grid rapidly. In addition, the resulting software, which pipelines the entire p$K_a$ calculation procedure, is available to all potential users from the greater bioscience community.