- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 23 (2018), pp. 408-439.
Published online: 2018-02
Cited by
- BibTex
- RIS
- TXT
In this work, we develop an hp-adaptivity strategy for the minimum action method (MAM) using a posteriori error estimate. MAM plays an important role in minimizing the Freidlin-Wentzell action functional, which is the central object of the Freidlin-Wentzell theory of large deviations for noise-induced transitions in stochastic dynamical systems. Because of the demanding computation cost, especially in spatially extended systems, numerical efficiency is a critical issue for MAM. Difficulties come from both temporal and spatial discretizations. One severe hurdle for the application of MAM to large scale systems is the global reparametrization in time direction, which is needed in most versions of MAM to achieve accuracy. We recently introduced a new version of MAM in [22], called tMAM, where we used some simple heuristic criteria to demonstrate that tMAM can be effectively coupled with $h$-adaptivity, i.e., the global reparametrization can be removed. The target of this paper is to integrate $hp$-adaptivity into tMAM using a posteriori error estimation techniques, which provides a general adaptive MAM more suitable for parallel computing. More specifically, we use the zero-Hamiltonian constraint to define an indicator to measure the error induced by linear time scaling, and the derivative recovery technique to construct an error indicator and a regularity indicator for the transition paths approximated by finite elements. Strategies for $hp$-adaptivity have been developed. Numerical results are presented.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0025}, url = {http://global-sci.org/intro/article_detail/cicp/10531.html} }In this work, we develop an hp-adaptivity strategy for the minimum action method (MAM) using a posteriori error estimate. MAM plays an important role in minimizing the Freidlin-Wentzell action functional, which is the central object of the Freidlin-Wentzell theory of large deviations for noise-induced transitions in stochastic dynamical systems. Because of the demanding computation cost, especially in spatially extended systems, numerical efficiency is a critical issue for MAM. Difficulties come from both temporal and spatial discretizations. One severe hurdle for the application of MAM to large scale systems is the global reparametrization in time direction, which is needed in most versions of MAM to achieve accuracy. We recently introduced a new version of MAM in [22], called tMAM, where we used some simple heuristic criteria to demonstrate that tMAM can be effectively coupled with $h$-adaptivity, i.e., the global reparametrization can be removed. The target of this paper is to integrate $hp$-adaptivity into tMAM using a posteriori error estimation techniques, which provides a general adaptive MAM more suitable for parallel computing. More specifically, we use the zero-Hamiltonian constraint to define an indicator to measure the error induced by linear time scaling, and the derivative recovery technique to construct an error indicator and a regularity indicator for the transition paths approximated by finite elements. Strategies for $hp$-adaptivity have been developed. Numerical results are presented.