- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 23 (2018), pp. 315-360.
Published online: 2018-02
Cited by
- BibTex
- RIS
- TXT
The present article is the third part of a series of papers devoted to the shallow water wave modelling. In this part we investigate the derivation of some long wave models on a deformed sphere. We propose first a suitable for our purposes formulation of the full EULER equations on a sphere. Then, by applying the depth-averaging procedure we derive first a new fully nonlinear weakly dispersive base model. After this step we show how to obtain some weakly nonlinear models on the sphere in the so-called BOUSSINESQ regime. We have to say that the proposed base model contains an additional velocity variable which has to be specified by a closure relation. Physically, it represents a dispersive correction to the velocity vector. So, the main outcome of our article should be rather considered as a whole family of long wave models.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0179c}, url = {http://global-sci.org/intro/article_detail/cicp/10529.html} }The present article is the third part of a series of papers devoted to the shallow water wave modelling. In this part we investigate the derivation of some long wave models on a deformed sphere. We propose first a suitable for our purposes formulation of the full EULER equations on a sphere. Then, by applying the depth-averaging procedure we derive first a new fully nonlinear weakly dispersive base model. After this step we show how to obtain some weakly nonlinear models on the sphere in the so-called BOUSSINESQ regime. We have to say that the proposed base model contains an additional velocity variable which has to be specified by a closure relation. Physically, it represents a dispersive correction to the velocity vector. So, the main outcome of our article should be rather considered as a whole family of long wave models.