- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 23 (2018), pp. 168-197.
Published online: 2018-01
Cited by
- BibTex
- RIS
- TXT
This paper is devoted to the error estimate for the iterative discontinuous Galerkin (IDG) method introduced in [P. Yin, Y. Huang and H. Liu. Commun. Comput. Phys. 16: 491–515, 2014] to the nonlinear Poisson-Boltzmann equation. The total error includes both the iteration error and the discretization error of the direct DG method to linear elliptic equations. For the DDG method, the energy error is obtained by a constructive approach through an explicit global projection satisfying interface conditions dictated by the choice of numerical fluxes. The $L^2$ error of order O(hm+1) for polynomials of degree m is further recovered. The bounding constant is also shown to be independent of the iteration times. Numerical tests are given to validate the established convergence theory.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0226}, url = {http://global-sci.org/intro/article_detail/cicp/10524.html} }This paper is devoted to the error estimate for the iterative discontinuous Galerkin (IDG) method introduced in [P. Yin, Y. Huang and H. Liu. Commun. Comput. Phys. 16: 491–515, 2014] to the nonlinear Poisson-Boltzmann equation. The total error includes both the iteration error and the discretization error of the direct DG method to linear elliptic equations. For the DDG method, the energy error is obtained by a constructive approach through an explicit global projection satisfying interface conditions dictated by the choice of numerical fluxes. The $L^2$ error of order O(hm+1) for polynomials of degree m is further recovered. The bounding constant is also shown to be independent of the iteration times. Numerical tests are given to validate the established convergence theory.