- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 22 (2017), pp. 1385-1412.
Published online: 2017-11
Cited by
- BibTex
- RIS
- TXT
This paper proposes a novel distance derivative weighted ENO (DDWENO) limiter based on fixed reconstruction stencil and applies it to the second- and high-order finite volume method on unstructured grids. We choose the standard deviation coefficients of the flow variables as the smooth indicators by using the k-exact reconstruction method, and obtain the limited derivatives of the flow variables by weighting all derivatives of each cell according to smoothness. Furthermore, an additional weighting coefficient related to distance is introduced to emphasize the contribution of the central cell in smooth regions. The developed limiter, combining the advantages of the slope limiters and WENO-type limiters, can achieve the similar effect of WENO schemes in the fixed stencil with high computational efficiency. The numerical cases demonstrate that the DDWENO limiter can preserve the numerical accuracy in smooth regions, and capture the shock waves clearly and steeply as well.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0039}, url = {http://global-sci.org/intro/article_detail/cicp/10447.html} }This paper proposes a novel distance derivative weighted ENO (DDWENO) limiter based on fixed reconstruction stencil and applies it to the second- and high-order finite volume method on unstructured grids. We choose the standard deviation coefficients of the flow variables as the smooth indicators by using the k-exact reconstruction method, and obtain the limited derivatives of the flow variables by weighting all derivatives of each cell according to smoothness. Furthermore, an additional weighting coefficient related to distance is introduced to emphasize the contribution of the central cell in smooth regions. The developed limiter, combining the advantages of the slope limiters and WENO-type limiters, can achieve the similar effect of WENO schemes in the fixed stencil with high computational efficiency. The numerical cases demonstrate that the DDWENO limiter can preserve the numerical accuracy in smooth regions, and capture the shock waves clearly and steeply as well.