- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 22 (2017), pp. 1309-1332.
Published online: 2017-11
Cited by
- BibTex
- RIS
- TXT
This paper presents the simulation of complex separation flows over a modern fighter model at high angle of attack by using an unstructured/hybrid grid based Detached Eddy Simulation (DES) solver with an adaptive dissipation second-order hybrid scheme. Simulation results, including the complex vortex structures, as well as vortex breakdown phenomenon and the overall aerodynamic performance, are analyzed and compared with experimental data and unsteady Reynolds-Averaged Navier-Stokes (URANS) results, which indicates that with the DES solver, clearer vortical flow structures are captured and more accurate aerodynamic coefficients are obtained. The unsteady properties of DES flow field are investigated in detail by correlation coefficient analysis, power spectral density (PSD) analysis and proper orthogonal decomposition (POD) analysis, which indicates that the spiral motion of the primary vortex on the leeward side of the aircraft model is highly nonlinear and dominates the flow field. Through the comparisons of flow topology and pressure distributions with URANS results, the reason why higher and more accurate lift can be obtained by DES is discussed. Overall, these results show the potential capability of present DES solver in industrial applications.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0132}, url = {http://global-sci.org/intro/article_detail/cicp/10444.html} }This paper presents the simulation of complex separation flows over a modern fighter model at high angle of attack by using an unstructured/hybrid grid based Detached Eddy Simulation (DES) solver with an adaptive dissipation second-order hybrid scheme. Simulation results, including the complex vortex structures, as well as vortex breakdown phenomenon and the overall aerodynamic performance, are analyzed and compared with experimental data and unsteady Reynolds-Averaged Navier-Stokes (URANS) results, which indicates that with the DES solver, clearer vortical flow structures are captured and more accurate aerodynamic coefficients are obtained. The unsteady properties of DES flow field are investigated in detail by correlation coefficient analysis, power spectral density (PSD) analysis and proper orthogonal decomposition (POD) analysis, which indicates that the spiral motion of the primary vortex on the leeward side of the aircraft model is highly nonlinear and dominates the flow field. Through the comparisons of flow topology and pressure distributions with URANS results, the reason why higher and more accurate lift can be obtained by DES is discussed. Overall, these results show the potential capability of present DES solver in industrial applications.