- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In this paper we develop a Stochastic Collocation Method (SCM) for flow in randomly heterogeneous porous media. At first, the Karhunen-Loève expansion is taken to decompose the log transformed hydraulic conductivity field, which leads to a stochastic PDE that only depends on a finite number of i.i.d. Gaussian random variables. Based on the eigenvalue decay property and a rough error estimate of Stroud cubature in SCM, we propose to subdivide the leading dimensions in the integration space for random variables to increase the accuracy. We refer to this approach as adaptive Stroud SCM. One- and two-dimensional steady-state single phase flow examples are simulated with the new method, and comparisons are made with other stochastic methods, namely, the Monte Carlo method, the tensor product SCM, and the quasi-Monte Carlo SCM. The results indicate that the adaptive Stroud SCM is more efficient and the statistical moments of the hydraulic head can be more accurately estimated.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/10198.html} }In this paper we develop a Stochastic Collocation Method (SCM) for flow in randomly heterogeneous porous media. At first, the Karhunen-Loève expansion is taken to decompose the log transformed hydraulic conductivity field, which leads to a stochastic PDE that only depends on a finite number of i.i.d. Gaussian random variables. Based on the eigenvalue decay property and a rough error estimate of Stroud cubature in SCM, we propose to subdivide the leading dimensions in the integration space for random variables to increase the accuracy. We refer to this approach as adaptive Stroud SCM. One- and two-dimensional steady-state single phase flow examples are simulated with the new method, and comparisons are made with other stochastic methods, namely, the Monte Carlo method, the tensor product SCM, and the quasi-Monte Carlo SCM. The results indicate that the adaptive Stroud SCM is more efficient and the statistical moments of the hydraulic head can be more accurately estimated.