Commutators of Littlewood-Paley Operators on Herz Spaces with Variable Exponent
Anal. Theory Appl., 32 (2016), pp. 149-163.
Published online: 2016-04
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-32-149,
author = {H. Wang and Y. Wu},
title = {Commutators of Littlewood-Paley Operators on Herz Spaces with Variable Exponent},
journal = {Analysis in Theory and Applications},
year = {2016},
volume = {32},
number = {2},
pages = {149--163},
abstract = {
Let $\Omega\in L^2(\mathrm{S}^{n-1})$ be homogeneous function of degree zero and $b$ be BMO functions. In this paper, we obtain some boundedness of the Littlewood-Paley Operators and their higher-order commutators on Herz spaces with variable exponent.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2016.v32.n2.4}, url = {http://global-sci.org/intro/article_detail/ata/4661.html} }
TY - JOUR
T1 - Commutators of Littlewood-Paley Operators on Herz Spaces with Variable Exponent
AU - H. Wang & Y. Wu
JO - Analysis in Theory and Applications
VL - 2
SP - 149
EP - 163
PY - 2016
DA - 2016/04
SN - 32
DO - http://doi.org/10.4208/ata.2016.v32.n2.4
UR - https://global-sci.org/intro/article_detail/ata/4661.html
KW - Herz space, variable exponent, commutator, area integral, Littlewood-Paley $g_\lambda^\ast$ function.
AB -
Let $\Omega\in L^2(\mathrm{S}^{n-1})$ be homogeneous function of degree zero and $b$ be BMO functions. In this paper, we obtain some boundedness of the Littlewood-Paley Operators and their higher-order commutators on Herz spaces with variable exponent.
H. Wang and Y. Wu. (2016). Commutators of Littlewood-Paley Operators on Herz Spaces with Variable Exponent.
Analysis in Theory and Applications. 32 (2).
149-163.
doi:10.4208/ata.2016.v32.n2.4
Copy to clipboard