On the Green Function of the Annulus
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-32-52,
author = {M. Grossi , and Vujadinović , D.},
title = {On the Green Function of the Annulus},
journal = {Analysis in Theory and Applications},
year = {2016},
volume = {32},
number = {1},
pages = {52--64},
abstract = {
Using the Gegenbauer polynomials and the zonal harmonics functions we give some representation formulae of the Green function in the annulus. We apply this result to prove some uniqueness results for some nonlinear elliptic problems.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2016.v32.n1.5}, url = {http://global-sci.org/intro/article_detail/ata/4654.html} }
TY - JOUR
T1 - On the Green Function of the Annulus
AU - M. Grossi ,
AU - Vujadinović , D.
JO - Analysis in Theory and Applications
VL - 1
SP - 52
EP - 64
PY - 2016
DA - 2016/01
SN - 32
DO - http://doi.org/10.4208/ata.2016.v32.n1.5
UR - https://global-sci.org/intro/article_detail/ata/4654.html
KW - Green's function, symmetries, uniqueness.
AB -
Using the Gegenbauer polynomials and the zonal harmonics functions we give some representation formulae of the Green function in the annulus. We apply this result to prove some uniqueness results for some nonlinear elliptic problems.
M. Grossi , and Vujadinović , D.. (2016). On the Green Function of the Annulus.
Analysis in Theory and Applications. 32 (1).
52-64.
doi:10.4208/ata.2016.v32.n1.5
Copy to clipboard