arrow
Volume 32, Issue 1
On the Green Function of the Annulus

M. Grossi & D. Vujadinović

Anal. Theory Appl., 32 (2016), pp. 52-64.

Published online: 2016-01

Export citation
  • Abstract

Using the Gegenbauer polynomials and the zonal harmonics functions we give some representation formulae of the Green function in the annulus. We apply this result to prove some uniqueness results for some nonlinear elliptic problems.

  • AMS Subject Headings

35B09

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{ATA-32-52, author = {M. Grossi , and Vujadinović , D.}, title = {On the Green Function of the Annulus}, journal = {Analysis in Theory and Applications}, year = {2016}, volume = {32}, number = {1}, pages = {52--64}, abstract = {

Using the Gegenbauer polynomials and the zonal harmonics functions we give some representation formulae of the Green function in the annulus. We apply this result to prove some uniqueness results for some nonlinear elliptic problems.

}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2016.v32.n1.5}, url = {http://global-sci.org/intro/article_detail/ata/4654.html} }
TY - JOUR T1 - On the Green Function of the Annulus AU - M. Grossi , AU - Vujadinović , D. JO - Analysis in Theory and Applications VL - 1 SP - 52 EP - 64 PY - 2016 DA - 2016/01 SN - 32 DO - http://doi.org/10.4208/ata.2016.v32.n1.5 UR - https://global-sci.org/intro/article_detail/ata/4654.html KW - Green's function, symmetries, uniqueness. AB -

Using the Gegenbauer polynomials and the zonal harmonics functions we give some representation formulae of the Green function in the annulus. We apply this result to prove some uniqueness results for some nonlinear elliptic problems.

M. Grossi , and Vujadinović , D.. (2016). On the Green Function of the Annulus. Analysis in Theory and Applications. 32 (1). 52-64. doi:10.4208/ata.2016.v32.n1.5
Copy to clipboard
The citation has been copied to your clipboard