$L^p$ Bounds for the Commutators of Rough Singular Integrals Associated with Surfaces of Revolution
Anal. Theory Appl., 31 (2015), pp. 176-183.
Published online: 2017-04
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-31-176,
author = {Z. Niu, K. Zhu and Y. Chen},
title = {$L^p$ Bounds for the Commutators of Rough Singular Integrals Associated with Surfaces of Revolution},
journal = {Analysis in Theory and Applications},
year = {2017},
volume = {31},
number = {2},
pages = {176--183},
abstract = {
In this paper, we establish the $L^p({\Bbb R}^{n+1} )$ boundedness for the commutators of singular integrals associated to surfaces of revolution, $\{(t,\phi(|t|)):t\in {\Bbb R}^{n}\}$, with rough kernels $\Omega\in L(\log L)^2({\Bbb S}^{n-1})$, if $\phi(|t|)=|t|$.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2015.v31.n2.7}, url = {http://global-sci.org/intro/article_detail/ata/4632.html} }
TY - JOUR
T1 - $L^p$ Bounds for the Commutators of Rough Singular Integrals Associated with Surfaces of Revolution
AU - Z. Niu, K. Zhu & Y. Chen
JO - Analysis in Theory and Applications
VL - 2
SP - 176
EP - 183
PY - 2017
DA - 2017/04
SN - 31
DO - http://doi.org/10.4208/ata.2015.v31.n2.7
UR - https://global-sci.org/intro/article_detail/ata/4632.html
KW - Commutator, singular integral, surface of revolution, rough kernel.
AB -
In this paper, we establish the $L^p({\Bbb R}^{n+1} )$ boundedness for the commutators of singular integrals associated to surfaces of revolution, $\{(t,\phi(|t|)):t\in {\Bbb R}^{n}\}$, with rough kernels $\Omega\in L(\log L)^2({\Bbb S}^{n-1})$, if $\phi(|t|)=|t|$.
Z. Niu, K. Zhu and Y. Chen. (2017). $L^p$ Bounds for the Commutators of Rough Singular Integrals Associated with Surfaces of Revolution.
Analysis in Theory and Applications. 31 (2).
176-183.
doi:10.4208/ata.2015.v31.n2.7
Copy to clipboard