arrow
Volume 28, Issue 1
Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence

Ayhan Esi & Binod Chandra Tripathy

Anal. Theory Appl., 28 (2012), pp. 19-26.

Published online: 2012-03

Export citation
  • Abstract

In this article we introduce the difference sequence spaces $W_0[ f, \Delta m]$, $W_1[ f ,\Delta m]$,$W_\infty[ f ,\Delta m]$ and $S[f,\Delta m]$, defined by a modulus function $f$. We obtain a relation between $W_1[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and $S[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and prove some inclusion results.

  • AMS Subject Headings

40A05, 40A35, 46A45

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{ATA-28-19, author = {Ayhan Esi and Binod Chandra Tripathy}, title = {Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence}, journal = {Analysis in Theory and Applications}, year = {2012}, volume = {28}, number = {1}, pages = {19--26}, abstract = {

In this article we introduce the difference sequence spaces $W_0[ f, \Delta m]$, $W_1[ f ,\Delta m]$,$W_\infty[ f ,\Delta m]$ and $S[f,\Delta m]$, defined by a modulus function $f$. We obtain a relation between $W_1[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and $S[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and prove some inclusion results.

}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2012.v28.n1.3}, url = {http://global-sci.org/intro/article_detail/ata/4537.html} }
TY - JOUR T1 - Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence AU - Ayhan Esi & Binod Chandra Tripathy JO - Analysis in Theory and Applications VL - 1 SP - 19 EP - 26 PY - 2012 DA - 2012/03 SN - 28 DO - http://doi.org/10.4208/ata.2012.v28.n1.3 UR - https://global-sci.org/intro/article_detail/ata/4537.html KW - Strongly Cesàro summable sequence, modulus function, statistical convergence. AB -

In this article we introduce the difference sequence spaces $W_0[ f, \Delta m]$, $W_1[ f ,\Delta m]$,$W_\infty[ f ,\Delta m]$ and $S[f,\Delta m]$, defined by a modulus function $f$. We obtain a relation between $W_1[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and $S[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and prove some inclusion results.

Ayhan Esi and Binod Chandra Tripathy. (2012). Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence. Analysis in Theory and Applications. 28 (1). 19-26. doi:10.4208/ata.2012.v28.n1.3
Copy to clipboard
The citation has been copied to your clipboard