Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-28-19,
author = {Ayhan Esi and Binod Chandra Tripathy},
title = {Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence},
journal = {Analysis in Theory and Applications},
year = {2012},
volume = {28},
number = {1},
pages = {19--26},
abstract = {
In this article we introduce the difference sequence spaces $W_0[ f, \Delta m]$, $W_1[ f ,\Delta m]$,$W_\infty[ f ,\Delta m]$ and $S[f,\Delta m]$, defined by a modulus function $f$. We obtain a relation between $W_1[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and $S[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and prove some inclusion results.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2012.v28.n1.3}, url = {http://global-sci.org/intro/article_detail/ata/4537.html} }
TY - JOUR
T1 - Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence
AU - Ayhan Esi & Binod Chandra Tripathy
JO - Analysis in Theory and Applications
VL - 1
SP - 19
EP - 26
PY - 2012
DA - 2012/03
SN - 28
DO - http://doi.org/10.4208/ata.2012.v28.n1.3
UR - https://global-sci.org/intro/article_detail/ata/4537.html
KW - Strongly Cesàro summable sequence, modulus function, statistical convergence.
AB -
In this article we introduce the difference sequence spaces $W_0[ f, \Delta m]$, $W_1[ f ,\Delta m]$,$W_\infty[ f ,\Delta m]$ and $S[f,\Delta m]$, defined by a modulus function $f$. We obtain a relation between $W_1[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and $S[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and prove some inclusion results.
Ayhan Esi and Binod Chandra Tripathy. (2012). Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence.
Analysis in Theory and Applications. 28 (1).
19-26.
doi:10.4208/ata.2012.v28.n1.3
Copy to clipboard