Anal. Theory Appl., 29 (2013), pp. 135-148.
Published online: 2013-06
Cited by
- BibTex
- RIS
- TXT
In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral $\mu_{\Omega,s}$ and Littlewood-Paley functions $\mu_{\Omega}$ and $\mu^{*}_{\lambda}$ on the weighted amalgam spaces $(L^{q}_\omega,L^{p})^{\alpha}(\mathbf{R}^{n})$ as $1 < q\leq \alpha < p\leq \infty$.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2013.v29.n2.5}, url = {http://global-sci.org/intro/article_detail/ata/4522.html} }In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral $\mu_{\Omega,s}$ and Littlewood-Paley functions $\mu_{\Omega}$ and $\mu^{*}_{\lambda}$ on the weighted amalgam spaces $(L^{q}_\omega,L^{p})^{\alpha}(\mathbf{R}^{n})$ as $1 < q\leq \alpha < p\leq \infty$.