Anal. Theory Appl., 29 (2013), pp. 120-127.
Published online: 2013-06
Cited by
- BibTex
- RIS
- TXT
In this note, the author prove that maximal Bochner-Riesz commutator $B^b_{\delta,\ast}$ generated by operator $B_{\delta,\ast}$ and function $b\in BMO(\omega)$ is a bounded operator from $L^{p}(\mu)$ into $L^{p}(\nu)$, where $\omega\in(\mu\nu^{-1})^{\frac{1}{p}},\mu,\nu\in A_p$ for $1 < p <\infty$. The proof relies heavily on the pointwise estimates for the sharp maximal function of the commutator $B^b_{\delta,\ast}$.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2013.v29.n2.3}, url = {http://global-sci.org/intro/article_detail/ata/4520.html} }In this note, the author prove that maximal Bochner-Riesz commutator $B^b_{\delta,\ast}$ generated by operator $B_{\delta,\ast}$ and function $b\in BMO(\omega)$ is a bounded operator from $L^{p}(\mu)$ into $L^{p}(\nu)$, where $\omega\in(\mu\nu^{-1})^{\frac{1}{p}},\mu,\nu\in A_p$ for $1 < p <\infty$. The proof relies heavily on the pointwise estimates for the sharp maximal function of the commutator $B^b_{\delta,\ast}$.