arrow
Volume 30, Issue 4
Nonconstant Harmonic Functions on the Level 3 Sierpinski Gasket

D. L. Tang & R. Hu

Anal. Theory Appl., 30 (2014), pp. 417-424.

Published online: 2014-11

Export citation
  • Abstract

We give a detailed description of nonconstant harmonic functions on the level 3 Sierpinski gasket. Then we extend the method on $\beta$-set with $1/3< \beta < 1/2$.

  • AMS Subject Headings

28A80

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{ATA-30-417, author = {D. L. Tang and R. Hu}, title = {Nonconstant Harmonic Functions on the Level 3 Sierpinski Gasket}, journal = {Analysis in Theory and Applications}, year = {2014}, volume = {30}, number = {4}, pages = {417--424}, abstract = {

We give a detailed description of nonconstant harmonic functions on the level 3 Sierpinski gasket. Then we extend the method on $\beta$-set with $1/3< \beta < 1/2$.

}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2014.v30.n4.9}, url = {http://global-sci.org/intro/article_detail/ata/4506.html} }
TY - JOUR T1 - Nonconstant Harmonic Functions on the Level 3 Sierpinski Gasket AU - D. L. Tang & R. Hu JO - Analysis in Theory and Applications VL - 4 SP - 417 EP - 424 PY - 2014 DA - 2014/11 SN - 30 DO - http://doi.org/10.4208/ata.2014.v30.n4.9 UR - https://global-sci.org/intro/article_detail/ata/4506.html KW - Nonconstant harmonic function, level 3 Sierpinski gasket, $\beta$-set. AB -

We give a detailed description of nonconstant harmonic functions on the level 3 Sierpinski gasket. Then we extend the method on $\beta$-set with $1/3< \beta < 1/2$.

D. L. Tang and R. Hu. (2014). Nonconstant Harmonic Functions on the Level 3 Sierpinski Gasket. Analysis in Theory and Applications. 30 (4). 417-424. doi:10.4208/ata.2014.v30.n4.9
Copy to clipboard
The citation has been copied to your clipboard