Boundedness for Hardy Type Operators on Herz Spaces with Variable Exponents
Anal. Theory Appl., 30 (2014), pp. 224-235.
Published online: 2014-06
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-30-224,
author = {M. Wang, L. S. Shu and M. Qu},
title = {Boundedness for Hardy Type Operators on Herz Spaces with Variable Exponents},
journal = {Analysis in Theory and Applications},
year = {2014},
volume = {30},
number = {2},
pages = {224--235},
abstract = {
In this paper, we will prove the boundedness of Hardy type operators $H_{\beta(x)}$ and $H^{\ast}_{\beta(x)}$of variable order $\beta(x)$ on Herz spaces $K^{\alpha(\cdot)}_{p(\cdot), q}$and $\dot{K}^{\alpha(\cdot)}_{p(\cdot), q}$, where $\alpha(\cdot)$ and $p(\cdot)$ are both variable.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2014.v30.n2.8}, url = {http://global-sci.org/intro/article_detail/ata/4487.html} }
TY - JOUR
T1 - Boundedness for Hardy Type Operators on Herz Spaces with Variable Exponents
AU - M. Wang, L. S. Shu & M. Qu
JO - Analysis in Theory and Applications
VL - 2
SP - 224
EP - 235
PY - 2014
DA - 2014/06
SN - 30
DO - http://doi.org/10.4208/ata.2014.v30.n2.8
UR - https://global-sci.org/intro/article_detail/ata/4487.html
KW - Herz spaces, Hardy type operators, variable exponent.
AB -
In this paper, we will prove the boundedness of Hardy type operators $H_{\beta(x)}$ and $H^{\ast}_{\beta(x)}$of variable order $\beta(x)$ on Herz spaces $K^{\alpha(\cdot)}_{p(\cdot), q}$and $\dot{K}^{\alpha(\cdot)}_{p(\cdot), q}$, where $\alpha(\cdot)$ and $p(\cdot)$ are both variable.
M. Wang, L. S. Shu and M. Qu. (2014). Boundedness for Hardy Type Operators on Herz Spaces with Variable Exponents.
Analysis in Theory and Applications. 30 (2).
224-235.
doi:10.4208/ata.2014.v30.n2.8
Copy to clipboard