Cited by
- BibTex
- RIS
- TXT
In this paper, we mainly explore the existence of entire solutions of the
quadratic trinomial partial differential-difference equation $$af^2(z)+2\omega f(z)(a_0f(z)+L^{k+s}_{1,2}(f(z)))+b(a_0f(z)+L^{k+s}_{1,2}(f(z)))^2=e^{g(z)}$$
by utilizing Nevanlinna’s theory in several complex variables, where $g(z)$ is entire
functions in $\mathbb{C}^n,$ $ω\ne 0$ and $a, b, ω ∈ \mathbb{C}.$ Furthermore, we get the exact froms of solutions of the above differential-difference equation when $ω = 0.$ Our results are generalizations of previous results. In addition, some examples are given to illustrate the
accuracy of the results.
In this paper, we mainly explore the existence of entire solutions of the
quadratic trinomial partial differential-difference equation $$af^2(z)+2\omega f(z)(a_0f(z)+L^{k+s}_{1,2}(f(z)))+b(a_0f(z)+L^{k+s}_{1,2}(f(z)))^2=e^{g(z)}$$
by utilizing Nevanlinna’s theory in several complex variables, where $g(z)$ is entire
functions in $\mathbb{C}^n,$ $ω\ne 0$ and $a, b, ω ∈ \mathbb{C}.$ Furthermore, we get the exact froms of solutions of the above differential-difference equation when $ω = 0.$ Our results are generalizations of previous results. In addition, some examples are given to illustrate the
accuracy of the results.