Hardy Operators and Commutators on Weighted Herz Spaces
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-39-178,
author = {Hu , JinglingPeng , Yangke and Li , Wenming},
title = {Hardy Operators and Commutators on Weighted Herz Spaces},
journal = {Analysis in Theory and Applications},
year = {2023},
volume = {39},
number = {2},
pages = {178--190},
abstract = {
Let $P$ be the classical Hardy operator on $(0, ∞)$ and $Q$ be the adjoint operator. In this paper, we get the boundedness for $P,$ $Q$ and the commutators of $P$ and $Q$ with $CMO$ functions on the weighted Herz spaces.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.OA-2021-0013}, url = {http://global-sci.org/intro/article_detail/ata/21822.html} }
TY - JOUR
T1 - Hardy Operators and Commutators on Weighted Herz Spaces
AU - Hu , Jingling
AU - Peng , Yangke
AU - Li , Wenming
JO - Analysis in Theory and Applications
VL - 2
SP - 178
EP - 190
PY - 2023
DA - 2023/06
SN - 39
DO - http://doi.org/10.4208/ata.OA-2021-0013
UR - https://global-sci.org/intro/article_detail/ata/21822.html
KW - Hardy operator, commutator, $CMO,$ weighted Herz space.
AB -
Let $P$ be the classical Hardy operator on $(0, ∞)$ and $Q$ be the adjoint operator. In this paper, we get the boundedness for $P,$ $Q$ and the commutators of $P$ and $Q$ with $CMO$ functions on the weighted Herz spaces.
Hu , JinglingPeng , Yangke and Li , Wenming. (2023). Hardy Operators and Commutators on Weighted Herz Spaces.
Analysis in Theory and Applications. 39 (2).
178-190.
doi:10.4208/ata.OA-2021-0013
Copy to clipboard