Cited by
- BibTex
- RIS
- TXT
We investigate the initial boundary value problem of some semilinear pseudo-parabolic equations with Newtonian nonlocal term. We establish a lower bound for the blow-up time if blow-up does occur. Also both the upper bound for $T$ and blow up rate of the solution are given when $J(u_0)<0$. Moreover, we establish the blow up result for arbitrary initial energy and the upper bound for $T$. As a product, we refine the lifespan when $J(u_0)<0.$
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.OA-2019-0021}, url = {http://global-sci.org/intro/article_detail/ata/21359.html} }We investigate the initial boundary value problem of some semilinear pseudo-parabolic equations with Newtonian nonlocal term. We establish a lower bound for the blow-up time if blow-up does occur. Also both the upper bound for $T$ and blow up rate of the solution are given when $J(u_0)<0$. Moreover, we establish the blow up result for arbitrary initial energy and the upper bound for $T$. As a product, we refine the lifespan when $J(u_0)<0.$