Cited by
- BibTex
- RIS
- TXT
In the present paper, by extending some fractional calculus to the framework of Clifford analysis, new classes of wavelet functions are presented. Firstly, some classes of monogenic polynomials are provided based on 2-parameters weight functions which extend the classical Jacobi ones in the context of Clifford analysis. The discovered polynomial sets are next applied to introduce new wavelet functions. Reconstruction formula as well as Fourier-Plancherel rules have been proved. The main tool reposes on the extension of fractional derivatives, fractional integrals and fractional Fourier transforms to Clifford analysis.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.OA-2019-0037}, url = {http://global-sci.org/intro/article_detail/ata/21356.html} }In the present paper, by extending some fractional calculus to the framework of Clifford analysis, new classes of wavelet functions are presented. Firstly, some classes of monogenic polynomials are provided based on 2-parameters weight functions which extend the classical Jacobi ones in the context of Clifford analysis. The discovered polynomial sets are next applied to introduce new wavelet functions. Reconstruction formula as well as Fourier-Plancherel rules have been proved. The main tool reposes on the extension of fractional derivatives, fractional integrals and fractional Fourier transforms to Clifford analysis.