Singular Solutions to Monge-Ampère Equation
DOI:
10.4208/ata.OA-0023
Anal. Theory Appl., 38 (2022), pp. 121-127.
Published online: 2022-07
[An open-access article; the PDF is free to any online user.]
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-38-121,
author = {Caffarelli , Luis A. and Yuan , Yu},
title = {Singular Solutions to Monge-Ampère Equation},
journal = {Analysis in Theory and Applications},
year = {2022},
volume = {38},
number = {2},
pages = {121--127},
abstract = {
We construct merely Lipschitz and $C^{1,α}$ with rational $α ∈ (0, 1 − 2/n]$ viscosity solutions to the Monge-Ampère equation with constant right hand side.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.OA-0023}, url = {http://global-sci.org/intro/article_detail/ata/20795.html} }
TY - JOUR
T1 - Singular Solutions to Monge-Ampère Equation
AU - Caffarelli , Luis A.
AU - Yuan , Yu
JO - Analysis in Theory and Applications
VL - 2
SP - 121
EP - 127
PY - 2022
DA - 2022/07
SN - 38
DO - http://doi.org/10.4208/ata.OA-0023
UR - https://global-sci.org/intro/article_detail/ata/20795.html
KW - Monge-Ampère equation.
AB -
We construct merely Lipschitz and $C^{1,α}$ with rational $α ∈ (0, 1 − 2/n]$ viscosity solutions to the Monge-Ampère equation with constant right hand side.
Caffarelli , Luis A. and Yuan , Yu. (2022). Singular Solutions to Monge-Ampère Equation.
Analysis in Theory and Applications. 38 (2).
121-127.
doi:10.4208/ata.OA-0023
Copy to clipboard