Cited by
- BibTex
- RIS
- TXT
For a finite discrete topological space $X$ with at least two elements, a nonempty set $\Gamma$, and a map $\varphi:\Gamma \to \Gamma$, $\sigma_{\varphi}:X^{\Gamma} \to X^{\Gamma}$ with $\sigma_{\varphi}((x_{\alpha})_{\alpha \in \Gamma})=(x_{\varphi(\alpha)})_{\alpha \in \Gamma}$ (for $(x_{\alpha})_{\alpha \in \Gamma} \in X^{\Gamma}$) is a generalized shift. In this text for $\mathcal{S} = \{\sigma_{\varphi}:\varphi \in \Gamma^{\Gamma}\}$ and $\mathcal{H}=\{\sigma_{\varphi}:\Gamma \xrightarrow{\varphi} \Gamma$ is bijective$\}$ we study proximal relations of transformation semigroups $(\mathcal{S}, X^{\Gamma})$ and $(\mathcal{H}, X^{\Gamma})$. Regarding proximal relation we prove: $$P(\mathcal{S}, X^{\Gamma}) = \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \exists \beta \in \Gamma (x_{\beta} = y_{\beta})\}$$and $P(\mathcal{H}, X^{\Gamma} ) \subseteq \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \{\beta \in \Gamma : x_{\beta} = y_{\beta}\}$ is infinite$\}$ $\cup\{($ $x,x) : x \in \mathcal{X}\}$.
Moreover, for infinite $\Gamma$, both transformation semigroups $(\mathcal{S}, X^{\Gamma})$ and $(\mathcal{H}, X^{\Gamma})$ are regionally proximal, i.e., $Q(\mathcal{S}, X^{\Gamma}) = Q(\mathcal{H}, X^{\Gamma} ) = X^{\Gamma} \times X^{\Gamma}$, also for sydetically proximal relation we have $L(\mathcal{H}, X^{\Gamma}) = \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \{\gamma ∈ \Gamma :$ $x_{\gamma} \neq y_{\gamma}\}$ is finite$\}$.
For a finite discrete topological space $X$ with at least two elements, a nonempty set $\Gamma$, and a map $\varphi:\Gamma \to \Gamma$, $\sigma_{\varphi}:X^{\Gamma} \to X^{\Gamma}$ with $\sigma_{\varphi}((x_{\alpha})_{\alpha \in \Gamma})=(x_{\varphi(\alpha)})_{\alpha \in \Gamma}$ (for $(x_{\alpha})_{\alpha \in \Gamma} \in X^{\Gamma}$) is a generalized shift. In this text for $\mathcal{S} = \{\sigma_{\varphi}:\varphi \in \Gamma^{\Gamma}\}$ and $\mathcal{H}=\{\sigma_{\varphi}:\Gamma \xrightarrow{\varphi} \Gamma$ is bijective$\}$ we study proximal relations of transformation semigroups $(\mathcal{S}, X^{\Gamma})$ and $(\mathcal{H}, X^{\Gamma})$. Regarding proximal relation we prove: $$P(\mathcal{S}, X^{\Gamma}) = \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \exists \beta \in \Gamma (x_{\beta} = y_{\beta})\}$$and $P(\mathcal{H}, X^{\Gamma} ) \subseteq \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \{\beta \in \Gamma : x_{\beta} = y_{\beta}\}$ is infinite$\}$ $\cup\{($ $x,x) : x \in \mathcal{X}\}$.
Moreover, for infinite $\Gamma$, both transformation semigroups $(\mathcal{S}, X^{\Gamma})$ and $(\mathcal{H}, X^{\Gamma})$ are regionally proximal, i.e., $Q(\mathcal{S}, X^{\Gamma}) = Q(\mathcal{H}, X^{\Gamma} ) = X^{\Gamma} \times X^{\Gamma}$, also for sydetically proximal relation we have $L(\mathcal{H}, X^{\Gamma}) = \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \{\gamma ∈ \Gamma :$ $x_{\gamma} \neq y_{\gamma}\}$ is finite$\}$.