arrow
Volume 37, Issue 3
Borderline Weighted Estimates for Commutators of Fractional Integrals

Zhidan Wang, Huoxiong Wu & Qingying Xue

Anal. Theory Appl., 37 (2021), pp. 404-425.

Published online: 2021-09

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract

Let $I_{\alpha,\vec{b}}$ be the multilinear commutators of the fractional integrals $I_{\alpha}$ with the symbol $\vec{b}=(b_1,  \cdots,b_k  )$. We show that the constant of borderline weighted estimates for $I_{\alpha}$ is $\frac{1}{{\varepsilon}}$, and for $I_{\alpha,{\vec{b}}}$ is $\frac{1}{{\varepsilon}^{k+1}}$ with each $b_i$ belongs to the Orlicz space $Osc_{\exp L^{s_i}}$.

  • AMS Subject Headings

42B25, 47G10

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{ATA-37-404, author = {Wang , ZhidanWu , Huoxiong and Xue , Qingying}, title = {Borderline Weighted Estimates for Commutators of Fractional Integrals}, journal = {Analysis in Theory and Applications}, year = {2021}, volume = {37}, number = {3}, pages = {404--425}, abstract = {

Let $I_{\alpha,\vec{b}}$ be the multilinear commutators of the fractional integrals $I_{\alpha}$ with the symbol $\vec{b}=(b_1,  \cdots,b_k  )$. We show that the constant of borderline weighted estimates for $I_{\alpha}$ is $\frac{1}{{\varepsilon}}$, and for $I_{\alpha,{\vec{b}}}$ is $\frac{1}{{\varepsilon}^{k+1}}$ with each $b_i$ belongs to the Orlicz space $Osc_{\exp L^{s_i}}$.

}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2021.lu80.08}, url = {http://global-sci.org/intro/article_detail/ata/19881.html} }
TY - JOUR T1 - Borderline Weighted Estimates for Commutators of Fractional Integrals AU - Wang , Zhidan AU - Wu , Huoxiong AU - Xue , Qingying JO - Analysis in Theory and Applications VL - 3 SP - 404 EP - 425 PY - 2021 DA - 2021/09 SN - 37 DO - http://doi.org/10.4208/ata.2021.lu80.08 UR - https://global-sci.org/intro/article_detail/ata/19881.html KW - Commutators, fractional integrals, borderline weighted estimates, Fefferman-Stein inequality. AB -

Let $I_{\alpha,\vec{b}}$ be the multilinear commutators of the fractional integrals $I_{\alpha}$ with the symbol $\vec{b}=(b_1,  \cdots,b_k  )$. We show that the constant of borderline weighted estimates for $I_{\alpha}$ is $\frac{1}{{\varepsilon}}$, and for $I_{\alpha,{\vec{b}}}$ is $\frac{1}{{\varepsilon}^{k+1}}$ with each $b_i$ belongs to the Orlicz space $Osc_{\exp L^{s_i}}$.

Wang , ZhidanWu , Huoxiong and Xue , Qingying. (2021). Borderline Weighted Estimates for Commutators of Fractional Integrals. Analysis in Theory and Applications. 37 (3). 404-425. doi:10.4208/ata.2021.lu80.08
Copy to clipboard
The citation has been copied to your clipboard