Anal. Theory Appl., 33 (2017), pp. 287-300.
Published online: 2017-08
Cited by
- BibTex
- RIS
- TXT
Let $\mathbb{D}$ be the open unit disk in the complex plane $\mathbb{C}$. For $\alpha>-1$, let $dA_{\alpha}(z)= (1+\alpha)\left(1-|z|^2\right)^{\alpha}dA(z)$ be the weighted Lebesgue measure on $\mathbb{D}$. For a positive function $\omega\in L^1(\mathbb{D}, dA_{\alpha})$, the generalized weighted Bergman-Orlicz space $\mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$ is the space of all analytic functions such that $$\|f\|_{\omega}^{\psi}=\int_{\mathbb{D}} \psi(|f(z)|) \omega(z) dA_{\alpha}(z) <\infty,$$ where $\psi$ is a strictly convex Orlicz function that satisfies other technical hypotheses. Let $G$ be a measurable subset of $\mathbb{D}$, we say $G$ satisfies the reverse Carleson condition for $\mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$ if there exists a positive constant $C$ such that$$\int_{G} \psi(|f(z)|) \omega(z) dA_{\alpha}(z) \geq C \int_{\mathbb{D}} \psi(|f(z)|) \omega(z) dA_{\alpha}(z),$$for all $f\in \mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$. Let $\mu$ be a positive Borel measure, we say $\mu$ satisfies the direct Carleson condition if there exists a positive constant $M$ such that for all $f\in \mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$,$$\int_{\mathbb{D}} \psi(|f(z)|) d\mu(z) \leq M \int_{\mathbb{D}} \psi(|f(z)|) \omega(z) dA_{\alpha}(z).$$ In this paper, we study the direct and reverse Carleson condition on the generalized weighted Bergman-Orlicz space $\mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$. We present conditions on the set $G$ such that the reverse Carleson condition holds. Moreover, we give a sufficient condition for the finite positive Borel measure $\mu$ to satisfy the direct carleson condition on the generalized weighted Bergman-Orlicz spaces.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2017.v33.n3.8}, url = {http://global-sci.org/intro/article_detail/ata/10518.html} }Let $\mathbb{D}$ be the open unit disk in the complex plane $\mathbb{C}$. For $\alpha>-1$, let $dA_{\alpha}(z)= (1+\alpha)\left(1-|z|^2\right)^{\alpha}dA(z)$ be the weighted Lebesgue measure on $\mathbb{D}$. For a positive function $\omega\in L^1(\mathbb{D}, dA_{\alpha})$, the generalized weighted Bergman-Orlicz space $\mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$ is the space of all analytic functions such that $$\|f\|_{\omega}^{\psi}=\int_{\mathbb{D}} \psi(|f(z)|) \omega(z) dA_{\alpha}(z) <\infty,$$ where $\psi$ is a strictly convex Orlicz function that satisfies other technical hypotheses. Let $G$ be a measurable subset of $\mathbb{D}$, we say $G$ satisfies the reverse Carleson condition for $\mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$ if there exists a positive constant $C$ such that$$\int_{G} \psi(|f(z)|) \omega(z) dA_{\alpha}(z) \geq C \int_{\mathbb{D}} \psi(|f(z)|) \omega(z) dA_{\alpha}(z),$$for all $f\in \mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$. Let $\mu$ be a positive Borel measure, we say $\mu$ satisfies the direct Carleson condition if there exists a positive constant $M$ such that for all $f\in \mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$,$$\int_{\mathbb{D}} \psi(|f(z)|) d\mu(z) \leq M \int_{\mathbb{D}} \psi(|f(z)|) \omega(z) dA_{\alpha}(z).$$ In this paper, we study the direct and reverse Carleson condition on the generalized weighted Bergman-Orlicz space $\mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$. We present conditions on the set $G$ such that the reverse Carleson condition holds. Moreover, we give a sufficient condition for the finite positive Borel measure $\mu$ to satisfy the direct carleson condition on the generalized weighted Bergman-Orlicz spaces.