Anal. Theory Appl., 33 (2017), pp. 118-133.
Published online: 2017-05
Cited by
- BibTex
- RIS
- TXT
In this paper, we introduce the concept of generalized $g$-quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized $g$-quasi-contractions with the spectral radius $r(\lambda)$ of the $g$-quasi-contractive constant vector $\lambda$ satisfying $r(\lambda) \in [0,\frac{1}{s})$ in the setting of cone $b$-metric spaces over Banach algebras, where the coefficient $s$ satisfies $s\ge 1$. The main results generalize, extend and unify several well-known comparable results in the literature.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2017.v33.n2.3}, url = {http://global-sci.org/intro/article_detail/ata/10040.html} }In this paper, we introduce the concept of generalized $g$-quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized $g$-quasi-contractions with the spectral radius $r(\lambda)$ of the $g$-quasi-contractive constant vector $\lambda$ satisfying $r(\lambda) \in [0,\frac{1}{s})$ in the setting of cone $b$-metric spaces over Banach algebras, where the coefficient $s$ satisfies $s\ge 1$. The main results generalize, extend and unify several well-known comparable results in the literature.