- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
On the Steady Solutions to a Model of Compressible Heat Conducting Fluid in Two Space Dimensions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-24-334,
author = {Milan Pokorný },
title = {On the Steady Solutions to a Model of Compressible Heat Conducting Fluid in Two Space Dimensions},
journal = {Journal of Partial Differential Equations},
year = {2011},
volume = {24},
number = {4},
pages = {334--350},
abstract = {
We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain with the pressure law p(\varrho,ϑ)∼\varrhoϑ+\varrho ln^α(1+\varrho). For the heat flux q∼-(1+ϑ^m)∇ϑ we show the existence of a weak solution provided α > max{1,1/m}, m > 0. This improves the recent result from [1].
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v24.n4.5}, url = {http://global-sci.org/intro/article_detail/jpde/5215.html} }
TY - JOUR
T1 - On the Steady Solutions to a Model of Compressible Heat Conducting Fluid in Two Space Dimensions
AU - Milan Pokorný
JO - Journal of Partial Differential Equations
VL - 4
SP - 334
EP - 350
PY - 2011
DA - 2011/11
SN - 24
DO - http://doi.org/10.4208/jpde.v24.n4.5
UR - https://global-sci.org/intro/article_detail/jpde/5215.html
KW - Steady compressible Navier-Stokes-Fourier system
KW - weak solution
KW - entropy inequality
KW - Orlicz spaces
KW - compensated compactness
KW - renormalized solution
AB -
We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain with the pressure law p(\varrho,ϑ)∼\varrhoϑ+\varrho ln^α(1+\varrho). For the heat flux q∼-(1+ϑ^m)∇ϑ we show the existence of a weak solution provided α > max{1,1/m}, m > 0. This improves the recent result from [1].
Milan Pokorný . (2011). On the Steady Solutions to a Model of Compressible Heat Conducting Fluid in Two Space Dimensions.
Journal of Partial Differential Equations. 24 (4).
334-350.
doi:10.4208/jpde.v24.n4.5
Copy to clipboard