TY - JOUR T1 - On the Steady Solutions to a Model of Compressible Heat Conducting Fluid in Two Space Dimensions AU - Milan Pokorný JO - Journal of Partial Differential Equations VL - 4 SP - 334 EP - 350 PY - 2011 DA - 2011/11 SN - 24 DO - http://doi.org/10.4208/jpde.v24.n4.5 UR - https://global-sci.org/intro/article_detail/jpde/5215.html KW - Steady compressible Navier-Stokes-Fourier system KW - weak solution KW - entropy inequality KW - Orlicz spaces KW - compensated compactness KW - renormalized solution AB -
We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain with the pressure law p(\varrho,ϑ)∼\varrhoϑ+\varrho ln^α(1+\varrho). For the heat flux q∼-(1+ϑ^m)∇ϑ we show the existence of a weak solution provided α > max{1,1/m}, m > 0. This improves the recent result from [1].