- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
The Equation Δu+∇φ•∇u=8πc(1-heu) on a Riemann Surface
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-25-335,
author = {Wang , Meng and Liu , Qingyue},
title = {The Equation Δu+∇φ•∇u=8πc(1-heu) on a Riemann Surface},
journal = {Journal of Partial Differential Equations},
year = {2012},
volume = {25},
number = {4},
pages = {335--355},
abstract = {
Let M be a compact Riemann surface, h(x) a positive smooth function on M, and f(x) a smooth function on M which satisfies that $∫_Me^φdV_g=1$. In this paper, we consider the functional $J(u)=½∫_M|∇u|^2e^φdV_g+8πc∫_Mue^φdV_g-8πclog∫_Mhe^{u+φ}dV_g$. We give a sufficient condition under which J achieves its minimum for $c≤inf_{x∈M^{e^φ(x)}}$.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v25.n4.3}, url = {http://global-sci.org/intro/article_detail/jpde/5190.html} }
TY - JOUR
T1 - The Equation Δu+∇φ•∇u=8πc(1-heu) on a Riemann Surface
AU - Wang , Meng
AU - Liu , Qingyue
JO - Journal of Partial Differential Equations
VL - 4
SP - 335
EP - 355
PY - 2012
DA - 2012/12
SN - 25
DO - http://doi.org/10.4208/jpde.v25.n4.3
UR - https://global-sci.org/intro/article_detail/jpde/5190.html
KW - Compact Riemann surface
KW - nonlinear elliptic equation
KW - gauss curvature
KW - existence of solution
AB -
Let M be a compact Riemann surface, h(x) a positive smooth function on M, and f(x) a smooth function on M which satisfies that $∫_Me^φdV_g=1$. In this paper, we consider the functional $J(u)=½∫_M|∇u|^2e^φdV_g+8πc∫_Mue^φdV_g-8πclog∫_Mhe^{u+φ}dV_g$. We give a sufficient condition under which J achieves its minimum for $c≤inf_{x∈M^{e^φ(x)}}$.
Wang , Meng and Liu , Qingyue. (2012). The Equation Δu+∇φ•∇u=8πc(1-heu) on a Riemann Surface.
Journal of Partial Differential Equations. 25 (4).
335-355.
doi:10.4208/jpde.v25.n4.3
Copy to clipboard