TY - JOUR T1 - The Equation Δu+∇φ•∇u=8πc(1-heu) on a Riemann Surface AU - Wang , Meng AU - Liu , Qingyue JO - Journal of Partial Differential Equations VL - 4 SP - 335 EP - 355 PY - 2012 DA - 2012/12 SN - 25 DO - http://doi.org/10.4208/jpde.v25.n4.3 UR - https://global-sci.org/intro/article_detail/jpde/5190.html KW - Compact Riemann surface KW - nonlinear elliptic equation KW - gauss curvature KW - existence of solution AB -
Let M be a compact Riemann surface, h(x) a positive smooth function on M, and f(x) a smooth function on M which satisfies that $∫_Me^φdV_g=1$. In this paper, we consider the functional $J(u)=½∫_M|∇u|^2e^φdV_g+8πc∫_Mue^φdV_g-8πclog∫_Mhe^{u+φ}dV_g$. We give a sufficient condition under which J achieves its minimum for $c≤inf_{x∈M^{e^φ(x)}}$.