The Boundedness for a Class of Rough Fractional Integral Operators on Variable Exponent Lebesgue Spaces
Anal. Theory Appl., 28 (2012), pp. 286-293.
Published online: 2012-10
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-28-286,
author = {Huiling Wu , and Lan , Jiacheng},
title = {The Boundedness for a Class of Rough Fractional Integral Operators on Variable Exponent Lebesgue Spaces},
journal = {Analysis in Theory and Applications},
year = {2012},
volume = {28},
number = {3},
pages = {286--293},
abstract = {
In this paper, we will discuss the behavior of a class of rough fractional integral operators on variable exponent Lebesgue spaces, and establish their boundedness from $L^{p_1(\cdot)}(\mathbf{R}^n)$ to $L^{p_2(\cdot)}(\mathbf{R}^n)$.
}, issn = {1573-8175}, doi = {https://doi.org/10.3969/j.issn.1672-4070.2012.03.009}, url = {http://global-sci.org/intro/article_detail/ata/4564.html} }
TY - JOUR
T1 - The Boundedness for a Class of Rough Fractional Integral Operators on Variable Exponent Lebesgue Spaces
AU - Huiling Wu ,
AU - Lan , Jiacheng
JO - Analysis in Theory and Applications
VL - 3
SP - 286
EP - 293
PY - 2012
DA - 2012/10
SN - 28
DO - http://doi.org/10.3969/j.issn.1672-4070.2012.03.009
UR - https://global-sci.org/intro/article_detail/ata/4564.html
KW - fractional integral, rough kernel, variable exponent Lebesgue space.
AB -
In this paper, we will discuss the behavior of a class of rough fractional integral operators on variable exponent Lebesgue spaces, and establish their boundedness from $L^{p_1(\cdot)}(\mathbf{R}^n)$ to $L^{p_2(\cdot)}(\mathbf{R}^n)$.
Huiling Wu , and Lan , Jiacheng. (2012). The Boundedness for a Class of Rough Fractional Integral Operators on Variable Exponent Lebesgue Spaces.
Analysis in Theory and Applications. 28 (3).
286-293.
doi:10.3969/j.issn.1672-4070.2012.03.009
Copy to clipboard