Order of Magnitude of Multiple Fourier Coefficients
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-29-27,
author = {R. G. Vyas and K. N. Darji},
title = {Order of Magnitude of Multiple Fourier Coefficients},
journal = {Analysis in Theory and Applications},
year = {2013},
volume = {29},
number = {1},
pages = {27--36},
abstract = {
The order of magnitude of multiple Fourier coefficients of complex valued functions of generalized bounded variations like $(\Lambda^1,\cdots, \Lambda^N)BV^{(p)}$ and $r-BV$, over $[0, 2\pi]^{N},$ are estimated.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2013.v29.n1.4}, url = {http://global-sci.org/intro/article_detail/ata/4512.html} }
TY - JOUR
T1 - Order of Magnitude of Multiple Fourier Coefficients
AU - R. G. Vyas & K. N. Darji
JO - Analysis in Theory and Applications
VL - 1
SP - 27
EP - 36
PY - 2013
DA - 2013/03
SN - 29
DO - http://doi.org/10.4208/ata.2013.v29.n1.4
UR - https://global-sci.org/intro/article_detail/ata/4512.html
KW - Order of magnitude of multiple Fourier coefficients, function of $(\Lambda^1
KW - \cdots
KW - \Lambda^N) BV^{(p)}$, $r-BV$ and Lip$(p
KW - \alpha_{1}
KW - \cdots
KW - \alpha_{N})$.
AB -
The order of magnitude of multiple Fourier coefficients of complex valued functions of generalized bounded variations like $(\Lambda^1,\cdots, \Lambda^N)BV^{(p)}$ and $r-BV$, over $[0, 2\pi]^{N},$ are estimated.
R. G. Vyas and K. N. Darji. (2013). Order of Magnitude of Multiple Fourier Coefficients.
Analysis in Theory and Applications. 29 (1).
27-36.
doi:10.4208/ata.2013.v29.n1.4
Copy to clipboard