Volume 32, Issue 3
Limit Cycles of the Generalized Polynomial Liénard Differential Systems

Amel Boulfoul & Amar Makhlouf

Ann. Appl. Math., 32 (2016), pp. 221-233.

Published online: 2022-06

Export citation
  • Abstract

Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Liénard differential systems $$\begin{cases} \dot{x}= y + ϵh^1_l (x) + ϵ^2h^2_l (x),  \\ \dot{y}= −x − ϵ(f^1_n (x)y^{2p+1}+ g^1_m(x)) + ϵ^2 (f^2_n(x)y^{2p+1}+ g^2_m(x)), \end{cases}$$ which bifurcate from the periodic orbits of the linear center $\dot{x} = y,$ $\dot{y}= −x,$ where $ϵ$ is a small parameter. The polynomials $h^1_l$ and $h^2_l$ have degree $l;$ $f^1_n$ and $f^2_n$ have degree $n;$ and $g^1_m,$ $g^2_m$ have degree $m.$ $p ∈ \mathbb{N}$ and [·] denotes the integer part function.

  • AMS Subject Headings

34C29, 34C25, 47H11

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{AAM-32-221, author = {Boulfoul , Amel and Makhlouf , Amar}, title = {Limit Cycles of the Generalized Polynomial Liénard Differential Systems}, journal = {Annals of Applied Mathematics}, year = {2022}, volume = {32}, number = {3}, pages = {221--233}, abstract = {

Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Liénard differential systems $$\begin{cases} \dot{x}= y + ϵh^1_l (x) + ϵ^2h^2_l (x),  \\ \dot{y}= −x − ϵ(f^1_n (x)y^{2p+1}+ g^1_m(x)) + ϵ^2 (f^2_n(x)y^{2p+1}+ g^2_m(x)), \end{cases}$$ which bifurcate from the periodic orbits of the linear center $\dot{x} = y,$ $\dot{y}= −x,$ where $ϵ$ is a small parameter. The polynomials $h^1_l$ and $h^2_l$ have degree $l;$ $f^1_n$ and $f^2_n$ have degree $n;$ and $g^1_m,$ $g^2_m$ have degree $m.$ $p ∈ \mathbb{N}$ and [·] denotes the integer part function.

}, issn = {}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/aam/20639.html} }
TY - JOUR T1 - Limit Cycles of the Generalized Polynomial Liénard Differential Systems AU - Boulfoul , Amel AU - Makhlouf , Amar JO - Annals of Applied Mathematics VL - 3 SP - 221 EP - 233 PY - 2022 DA - 2022/06 SN - 32 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/aam/20639.html KW - limit cycle, periodic orbit, Liénard differential system, averaging theory. AB -

Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Liénard differential systems $$\begin{cases} \dot{x}= y + ϵh^1_l (x) + ϵ^2h^2_l (x),  \\ \dot{y}= −x − ϵ(f^1_n (x)y^{2p+1}+ g^1_m(x)) + ϵ^2 (f^2_n(x)y^{2p+1}+ g^2_m(x)), \end{cases}$$ which bifurcate from the periodic orbits of the linear center $\dot{x} = y,$ $\dot{y}= −x,$ where $ϵ$ is a small parameter. The polynomials $h^1_l$ and $h^2_l$ have degree $l;$ $f^1_n$ and $f^2_n$ have degree $n;$ and $g^1_m,$ $g^2_m$ have degree $m.$ $p ∈ \mathbb{N}$ and [·] denotes the integer part function.

Boulfoul , Amel and Makhlouf , Amar. (2022). Limit Cycles of the Generalized Polynomial Liénard Differential Systems. Annals of Applied Mathematics. 32 (3). 221-233. doi:
Copy to clipboard
The citation has been copied to your clipboard