Volume 34, Issue 4
Ramsey Number of Hypergraph Paths

Erxiong Liu

Ann. Appl. Math., 34 (2018), pp. 383-394.

Published online: 2022-06

Export citation
  • Abstract

Let $H = (V, E)$ be a $k$-uniform hypergraph. For $1 ≤ s ≤ k − 1,$ an $s$-path $P^{(k,s)}_n$ of length $n$ in $H$ is a sequence of distinct vertices $v_1, v_2, · · · , v_{s+n(k−s)}$ such that $\{v_{1+i(k-s)}, \cdots, v_{s+(i+1)(k-s)}\}$ is an edge of $H$ for each $0 ≤ i ≤ n−1.$ In this paper, we prove that $R(P^ {(3s,s)}_n , P^{(3s,s)}_3) = (2n + 1)s + 1$ for $n ≥ 3.$

  • AMS Subject Headings

05C65

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{AAM-34-383, author = {Liu , Erxiong}, title = {Ramsey Number of Hypergraph Paths}, journal = {Annals of Applied Mathematics}, year = {2022}, volume = {34}, number = {4}, pages = {383--394}, abstract = {

Let $H = (V, E)$ be a $k$-uniform hypergraph. For $1 ≤ s ≤ k − 1,$ an $s$-path $P^{(k,s)}_n$ of length $n$ in $H$ is a sequence of distinct vertices $v_1, v_2, · · · , v_{s+n(k−s)}$ such that $\{v_{1+i(k-s)}, \cdots, v_{s+(i+1)(k-s)}\}$ is an edge of $H$ for each $0 ≤ i ≤ n−1.$ In this paper, we prove that $R(P^ {(3s,s)}_n , P^{(3s,s)}_3) = (2n + 1)s + 1$ for $n ≥ 3.$

}, issn = {}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/aam/20586.html} }
TY - JOUR T1 - Ramsey Number of Hypergraph Paths AU - Liu , Erxiong JO - Annals of Applied Mathematics VL - 4 SP - 383 EP - 394 PY - 2022 DA - 2022/06 SN - 34 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/aam/20586.html KW - hypergraph Ramsey number, path. AB -

Let $H = (V, E)$ be a $k$-uniform hypergraph. For $1 ≤ s ≤ k − 1,$ an $s$-path $P^{(k,s)}_n$ of length $n$ in $H$ is a sequence of distinct vertices $v_1, v_2, · · · , v_{s+n(k−s)}$ such that $\{v_{1+i(k-s)}, \cdots, v_{s+(i+1)(k-s)}\}$ is an edge of $H$ for each $0 ≤ i ≤ n−1.$ In this paper, we prove that $R(P^ {(3s,s)}_n , P^{(3s,s)}_3) = (2n + 1)s + 1$ for $n ≥ 3.$

Liu , Erxiong. (2022). Ramsey Number of Hypergraph Paths. Annals of Applied Mathematics. 34 (4). 383-394. doi:
Copy to clipboard
The citation has been copied to your clipboard