Estimates for Green's Functions of Elliptic Equations in Non-Divergence Form with Continuous Coefficients
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{AAM-37-111,
author = {Kim , Seick and Lee , Sungjin},
title = {Estimates for Green's Functions of Elliptic Equations in Non-Divergence Form with Continuous Coefficients},
journal = {Annals of Applied Mathematics},
year = {2021},
volume = {37},
number = {2},
pages = {111--130},
abstract = {
We present a new method for the existence and pointwise estimates of a Green's function of non-divergence form elliptic operator with Dini mean oscillation coefficients. We also present a sharp comparison with the corresponding Green's function for constant coefficients equations.
}, issn = {}, doi = {https://doi.org/10.4208/aam.OA-2021-0001}, url = {http://global-sci.org/intro/article_detail/aam/19364.html} }
TY - JOUR
T1 - Estimates for Green's Functions of Elliptic Equations in Non-Divergence Form with Continuous Coefficients
AU - Kim , Seick
AU - Lee , Sungjin
JO - Annals of Applied Mathematics
VL - 2
SP - 111
EP - 130
PY - 2021
DA - 2021/07
SN - 37
DO - http://doi.org/10.4208/aam.OA-2021-0001
UR - https://global-sci.org/intro/article_detail/aam/19364.html
KW - Green's function, Elliptic equations in non-divergence form, Dini mean oscillation coefficients.
AB -
We present a new method for the existence and pointwise estimates of a Green's function of non-divergence form elliptic operator with Dini mean oscillation coefficients. We also present a sharp comparison with the corresponding Green's function for constant coefficients equations.
Kim , Seick and Lee , Sungjin. (2021). Estimates for Green's Functions of Elliptic Equations in Non-Divergence Form with Continuous Coefficients.
Annals of Applied Mathematics. 37 (2).
111-130.
doi:10.4208/aam.OA-2021-0001
Copy to clipboard